
Devops Practices @Myntra
for Resiliency in Cloud

About Myntra & Jabong

Over 30 million active users (Myntra & Jabong)

Over 5 million reqs/min during peak traffic.

Targeted $2 Billion run rate in 2018 for Myntra & Jabong

300+ Microservices managed by 470+ engineering team.

Around 50K+ CPU in Hybrid cloud setup between 4 data-centers.

Mix of bare-metal, AWS, FK cloud and Azure in multiple geography, powered
by CDN partners like Akamai and Cloudinary.

What DevOps Do?

Devops goals at Myntra?

● Reduce MTTR during outages and have every incident taken to closure with

proper RCA and action item.

● Implement a successful monitoring strategy to provide insights and increase

operational efficiencies.

● Allow engineering to onboard applications without having to deal with

complexities of configuration and operations.

● Address preservation and recovery of business in event of outages

● Bring predictability and simplicity to chaotic build/release processes and pre-

prod testing.

● Enable comprehensive security, audit and compliance

Business Demands

● 4 Mega ‘End of Season Sale’ Every Year.

● Attracts 25 Times More Users than BAU.

● 6-8 hours Peak Traffic

● 10-15 minutes Burst Window - 1 Million+ Users

Needs & Challenges
● Bottlenecks for scaling.

○ Compute and Storage
○ Networking
○ Application Deployment
○ Load Balancers

● Quick Scaling- On Demand
○ Impossible with Bare Metal Environment
○ Cloud is the Only Solution

● Challenges with Auto Scale on cloud
○ Mass Deployment (>1000 Servers) in Real Time
○ Propagation of Config Updates
○ Not possible with Central resources like Load Balancers and Databases
○ Software Quality

How we fixed this?
● Containerization- Docker Containers

○ OS level virtualization of the Application

○ Lightweight and Immutable (Images)

● Orchestration

○ Kubernetes and Docker Swarm - Open Source

○ Automated Deployment, Scaling and Container Management

○ Kubernetes still runs on VMs

○ Underlying Hardware should also be Provisioned at the same rate

● Terraform - Infrastructure as Code

○ Automates Hardware Provisioning

● On demand server provisioning and Application deployments solved by

Kubernetes and Terraform

● Service config propagation to Load Balancer still an Issue

● Load balancer being a SPoF - Deteriorates Auto Scale Objective

● Service Discovery is the Solution

How we fixed this? .. cont

Services should ‘Register’ or ‘Deregister’

Service Discovery Decentralises the Load Balancing

Service A asks the Registry for Service B

Registry provides Service B’s Availability to Service A

Service A communicates to Service B at destined host

Service Discovery

Containerisation

Orchestration

● Application lifecycle Orchestration

○ Dev → Build → Test → Release

● Infrastructure Orchestration

○ On Demand (Sale Time)

○ Disaster Recovery

Application Lifecycle Orchestration

With Terraform we write, plan and create underlying Infrastructure as Code

Ansible configures and attaches the nodes to Kubernetes/Swarm Cluster

In house Controller orchestrates the Deployment and Scaling

Infrastructure Orchestration

Q & A

